ProjectEuler Solved Question-2 (with 3 solutions)
Q-2:- Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
SOL:-1
- The
fib()generator is responsible for generating Fibonacci numbers filter(lambda n: n % 2 == 0, ...)keeps just the even-valued elementssum(...)adds them up
def fib(max):
f1, f2 = 0, 1
while f1 < max:
yield f1
f1, f2 = f2, f1 + f2
print(sum(filter(lambda n: n % 2 == 0, fib(4000000))))
SOL:-2sum = 0f1, f2 = 0, 1
while f2 < 4000000:
if f2 % 2 == 0:
sum += f2
f1, f2 = f2, f1 + f2
print(sum)
SOL:-3P2 = 0fib= 0
f1 = 1
f2 = 0
debugP2 = []
while fib < 4000000:
fib = f1 + f2
f2 = f1
f1 = fib
if fib % 2 == 0:
P2 += fib
debugP2.append(fib)print(debugP2)
print(P2)
Comments
Post a Comment